Van Gen tot Geneesmiddel: Nuclear Imaging techniques

Part 4. PET in the Clinic

Bert Windhorst (bwindhorst@rnc.vu.nl)

Radiopharmaceutical scientist VU University Medical Center Amsterdam

Outline

2 cases:

[89Zr]trastuzumab (herceptin)

[¹¹C]PIB

HER2 and breast cancer

HER2 amplification/overexpression correlates with worse prognosis

Trastuzumab: anti-HER2 monoclonal IgG1 antibody for treatment of HER2 positive breast cancer

Nuclear Medicine & PET Research

Rationale for imaging HER2 in breast cancer

Non-invasive measurement of HER2 receptor status

Nuclear Medicine & PET Research

¹¹¹In-DTPA-trastuzumab SPECT/CT

Newly discovered tumor lesions in 13/15 patients

Optimization of HER2 imaging

Use PET to:

Improve spatial resolution

Increase signal-to-noise ratio

Development of PET tracer:

Zirconium-89 (89Zr)

Long-living isotope ($T_{1/2} = 78 \text{ hr}$)

Suitable for clinical use

Trastuzumab radiolabeling

89Zr-trastuzumab is obtained in 6 simple steps

Characteristics of 89Zr-trastuzumab

Excellent radiochemical purity (>95%)

High specific activity (>50 MBq/mg)

Maintenance of antigen binding (>80%)

Long-term stability in 37°C human serum

Animal study design

Athymic mice with HER2 positive or negative xenograft

5 MBq ⁸⁹Zr-trastuzumab iv

At 1, 3 & 6 days: microPET imaging & biodistribution

89Zr-trastuzumab tumor uptake

Day 1

Day 6

Macroscopic metastases
IHC confirmed HER2 expression

⁸⁹Zr-trastuzumab specific tumor uptake in mice

Design clinical HER2 imaging study

Aim

- Visualize HER2 positive tumors
- Find minimal trastuzumab dose required for optimal imaging

Eligible patients

Metastatic HER2 positive breast cancer (n=8)

Imaging procedure

- 37 MBq 89 Zr-trastuzumab (\approx 20 mSv) and PET scans days 1-5
- Compare to available CT, MRI and bone scans

Tumor visualization

Day 4

Metastasis in the brain

Conclusion

[89Zr]trastuzumab imaging is developed as a non invasive imaging technique to determine HER2 receptors in vivo

Next: larger trial in patients to validate diagnostic value

⁸⁹Zr labelling applicable to any MAb.

Further reading

Immuno-PET: A Navigator in Monoclonal Antibody Development and Applications

By Guus van Dongen *et al* (Blackboard)

Alzheimer's disease

[11C]PIB imaging, from research tool to clinical practice

AD at the cellular level

Senile plaques

Cause of degeneration

Post-mortem

Biological targets to image

Amyloid- β (A β)

Neurofibrillary tangles (NFTs)

Several leads explored

¹²⁵I Aβ – peptides Early 90's, in vivo: rapid metabolism, low brain uptake (Maggio et al, PNAS, 1992;89:5462)

^{99m}Tc labelled antibodies (mouse and Fab) Human trial: no specific signal

> Friedland et al, Ann NY Acad Sci, 1997;826:242 Bickel et al, Bioconjug Chem, 1994;5:119

Staining compounds as leads

A few of compounds

In vitro assays, hydrophilic compounds

Lead optimization via

Affinity

Lipophilicity

Nuclear Medicine & PET Research

First lead: Congo Red

Second lead: Thioflavin-S

Major compound: Thioflavin-T

$$N^{+}$$

Ki : 890 nM

 $LogD_{7.4}: 0.57$

Development of [11C]PIB

$$R1$$
 N
 $R2$
 $R3$

R1: OH, MeO, fluoroalkyl ether

R2/R3: Me, fluoroalkyl

Development of [11C]PIB

N-methyl-2-(4'methylaminophenyl)-6-hydroxybenzothiazole 6-OH-BTA-1, PIB

Ki 4 nM LogD_{7.4} 1.2

[11C]PIB labeling

[11C]CO₂ + LiAlH₄
$$\frac{\text{THF}}{1 \text{ min, RT}}$$
 [11C]CH₃OLi $\frac{\text{HI}}{1 \text{ min, 130 °C}}$ [11C]CH₃I

i)
$$[^{11}C]CH_3I$$
, 130 °C, 5 min

Yield: 400-1600 MBq EOS (10% cfd)

MeOH/HCl, 80°C, 3min; 60%

SA: 20-50 GBq/µmol N > 40, fail rate>15%

[¹¹C]PIB

[11C]PIB labeling

[11C]CH₃I + CF₃OSO₂Ag
$$\xrightarrow{\text{GraphPac}}$$
 CF₃OSO₂[11C]CH₃ 200 °C, on-line

Control vs AD patient

Disease progress

Conclusion

Amyloid plaques imaging with [11C]PIB works good

New tool in standard diagnosis

Used in clinical research as well

Further reading

Amyloid imaging in Alzheimer's disease: a promising new direction in Nuclear Medicine

By Bart van Berckel (on blackboard)

Nuclear Medicine & PET Research

The Gene-to-Medicine paradigm

Target discovery

Chem diversity

Hit

optimise

safety

efficacy

genomics

Lead chem

HTS

SAR

Pre clinical

human

bio informatics

chemo informatics

imaging

Final remarks

Imaging of biological targets is feasible

Molecular Imaging is a valueble tool

Especially in translational research. It is the bridge between bench and bedsie, between lab and clinic

Next years more indepth classes.

