¹⁸F practical aspects

Bert Windhorst Radiopharmaceutical scientist VU University Medical Center Amsterdam

Radiochemie.nl Cursus ¹⁸F chemie

Outline

Enriched water

¹⁸F Fluoride and Fluorine work up

Automation

Enriched water

 $H_2^{18}O$ needed : ${}^{18}O(p,n){}^{18}F$

Nuclear side reaction : ${}^{16}O(p,\alpha){}^{13}N$

High enrichement, high ¹⁸F yields

Expensive

Recycling H₂¹⁸O via oxidation and distillation

Radiochemie.nl Cursus ¹⁸F chemie

Enriched water

Recycling possible :

KMnO₄ / NaOH for oxidising organic residues

Distillation

Nowadays not much done anymore : Lower prices and exchange with supplier

Radiochemie.nl Cursus ¹⁸F chemie

¹⁸F substitution reactions

¹⁸F Work up

Extract ¹⁸F from H₂¹⁸O Anion exchange : Biorad AG1-X8 in CO₃²⁻ form More practical Seppak QMA or MN PS-HCO₃⁻ Elute ¹⁸F from ion exchange column with CO₃²⁻ solution in water or mixture of CH₃CN/water with PTC and K₂CO₃

Radiochemie.nl Cursus ¹⁸F chemie

¹⁸F Work up

No fluorination in presence of water

Azeotropic distillation with Acetonitril either under reduced pressure or normal pressure at 90-100 °C

"naked" fluoride impossible in organic solvent : Phase tranfer catalyst, PTC

Unreactive fluoride at glass surface

Radiochemie.nl Cursus ¹⁸F chemie

Philip

Automation

Type of system

Reliability

Software

Flexibility

Price

Automation

3 principles :

Robot

Valves and vials

Kits

Automation : Robot

Takes over manipulation inside hotcel

A few centers use these.

Advantage : flexibility and reliability

Disadvantage : costs and space

Use for routine and R&D

Radiochemie.nl Cursus ¹⁸F chemie

Automation : Valves and vials Control the whole proces in one machine Uses valves, vials and tubing Advantage : complete system, relatively cheap Disadvantage : less flexible, less reliable More R&D character, 'home build' possible

Radiochemie.nl Cursus ¹⁸F chemie

Valves and vials

First commercially available : Nuclear Interface

Valves and vials

bioscan

Radiochemie.nl Cursus ¹⁸F chemie

Valves and vials

Raytest

Radiochemie.nl Cursus ¹⁸F chemie

Automation: Kit principle

Especially suited for production situation

One kit for one production

Advantages: No cleaning, dispose kit, reliable

Disadvantage: Not flexible

Radiochemie.nl Cursus ¹⁸F chemie

Automation Kit principle

Coincidence GE Tracerlab MX

Bioscan FDG

Radiochemie.nl Cursus ¹⁸F chemie

Automation Kit principle

IBA Molecular

Radiochemie.nl Cursus ¹⁸F chemie

Automation practical issues

Translation from hand synthesis to automated synthesis can be difficult

Cleaning is very important

Only selected valves and tubing work

Lot of tricks involved

Radiochemie.nl Cursus ¹⁸F chemie

Automation considerations

Needed for protection

Only selected valves and tubing work

Software

GMP compliancy : in process control

Radiochemie.nl Cursus ¹⁸F chemie

Purification tricks

Fluoride binds strongly to Si and Al₂O₃

Apply Seppak cartridge : C18, Si or alumina

HPLC

Purification tricks

Radiochemie.nl Cursus ¹⁸F chemie (./_

Purification tricks

Radiochemie.nl Cursus ¹⁸F chemie

Purification tricks SPE formulation

Seppak C18, tC18, C8, tC8, C2 conditioned with sterile ethanol and water

Collect HPLC fraction in water at proper pH to trap Wash with sterile water Elute with sterile ethanol, sterile isotonic buffer

Safe, no cross contamination, reliable, sterile

Radiochemie.nl Cursus ¹⁸F chemie

